In class: The last three days we have had about half the class gone on the Ashland field trip. On Wednesday we investigated the properties of s-curves and paper clips [see here]. On Thursday we played grudge ball and battled over questions like
What is the sum of the mean, median, and mode of the numbers 2, 3, 0 , 3, 1, 4, 0, 3? [answer: 7.5]
Everyday at school, Jo climbs a flight of stairs. Jo can take the stairs
,
, or
at a time. For example, Jo could climb
, then
, then
. In how many ways can Jo climb the stairs? [can you figure out the answer? it is less than 30…]
Friday, 16 June 2017
Friday, June 16
In class this week students have been working on their statistics project. The project asks them to analyze a question in statistics — either a question which I created from a data set of student height and gender in CPMS advisory classes or a question of their choosing with data they find or generate. Here is the project task sheets and rubric.
Statistics project is due on Tuesday.
Thursday, 8 June 2017
Thursday, June 8 + Facial Tissue Request 😤
Upcoming: Trigonometry Test on Tuesday, June 13th.
In class: Problem solving with trigonometry. In order to be Highly Proficient in trigonometry students need to be able to solve a variety of problems involving right and non-right triangles. They should be able to write and solve equations involving $sin, cos$ and $tan$ as well as their inverses, recognize how to construct right triangles and use them to find missing measurements in non-right triangles. Recognize and explain how S-S-A information about a triangle may be ambiguous and measure both cases. Also, HP students will understand and be able to prove the Law of Sines and Cosines for acute triangles.
Assignment: For Monday students should complete
Problem Set #1 ("June 7")
Problem Set #2 ("Trigonometry p-set #6")
Notes: I made a trig review worksheet (here)
Thursday, June 8
Note: The formula for standard deviation involves (Greek, "Sigma") or "sum" notation.
refers to the ith element in the data set,
is the mean x-value.
- Find the difference between each value and the mean
- Square those differences
- Find the sum of all of the squares
- Divide that value by N (the number of data elements in the set)
- The Standard Deviation is the square root of the result
One way to understand the standard deviation is that it is kind of like the average distance from the mean in the data set.
Wednesday, 7 June 2017
Wednesday, June 7 + Facial Tissue request :)
The class has run out of facial tissue but there are still plenty of sniffles. So, if you would like to donate some facial tissue to the class that would be much appreciated and put to good use, keeping kids in class instead of heading to the restroom. Thank you thank you thank you!
Friday, 26 May 2017
Thursday, May 25
Thursday, 25 May 2017
Wednesday, May 24
Assignment: 9.8 on p. 555: 1-8, 11-12
Here is an example problem, similar to the one worked in class.
Let's analyze the function given by the equation below. We will try to work out its various characteristics and sketch a graph before resorting to computer graphing.
To obtain a common denominator we multiply the first term by and the second term by
Now we can simplify the expressions in the numerators and re-write as a single fraction.
Which simplifies to
or
Now that the function is in rational form, we can analyze its properties.
The function has vertical asymptotes at
and
We can tell from the numerator that the function will have x-intercepts where the numerator evaluates to zero, so we solve to get
=
So, we note the two x-intercepts.
In addition, we note that this function has denominator of greater degree than the numerator, so as approaches
the denominator will overpower the numerator and the value of the function will approach
, creating horizontal asymptotes at
Through point testing and some more intuition we can identify the location of the 4 sections of this function and sketch a graph
Wednesday, May 24
Students took the Similarity test (chapter 11) on Friday. This week we have learned the right-triangle definition of the trigonometric functions sine, cosine and tangent. As of now these functions take as input one of the non-right angles in a right triangle and their output is a specific ratio of sides in all such similar right triangles.
So, based on this definition, if that means that in any right triangle with a
angle, the ratio of
is approximately .57. In the figure below this means that
.
Assignments
Monday: No HW
Tuesday: 12.1 on p. 620-624: 4-9, 14-22, 27
Wednesday
1. "Understanding sine/cosine/tangent and their inverses" w/s
2. (3rd Period) 12.1 worksheet
2. (5th Period) 12.2 worksheet
Wednesday, May 24
* The distance formula (section 8.1)
* Using coordinates to prove that segments are congruent, parallel or perpendicular (8.2)
* Using congruence, perpendicularity and parallel properties to justify conjectures about shapes. (8.3)
* Writing and analyzing vertical shifts in linear or exponential functions (these have the form f(x) = g(x) + k).
Past assignments
Friday — 8.4 Task + Go (in class) completed on whiteboards, not necessarily in notebook.
Monday — 8.5 Task + RSG
Tuesday — 8.6 Task (Part 1/2/3 all) + 8.6 Set
Today’s assignment: Algebra & Geometry Review worksheet
Thursday, 18 May 2017
Thursday, May 18
In class we spent time reviewing for tomorrow’s Similarity (Ch. 11) Test.
Assignment: Chapter 11 Review on p. 624: 1-21 (pick 12 problems) & be ready for your test tomorrow.